skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rybkin, Alexei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We put forward a new approach to Deift-Trubowitz type trace formulas for the 1D Schrodinger operator with potentials that are summable with the first moment (short-range potentials). We prove that these formulas are preserved under the KdV flow whereas the class of short-range potentials is not. Finally, we show that our formulas are well-suited to study the dispersive smoothing effect. 
    more » « less
  2. Abstract In the Korteweg–de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann–Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step‐type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does. 
    more » « less
  3. Abstract In the context of the Cauchy problem for the Korteweg–de Vries equation we extend the inverse scattering transform to initial data that behave at plus infinity like a sum of Wigner–von Neumann type potentials with small coupling constants. Our arguments are based on the theory of Hankel operators. 
    more » « less
  4. Abstract In the KdV context, we revisit the classical Darboux transformation in the framework of the vector Riemann–Hilbert problem. This readily yields a version of the binary Darboux transformation providing a short‐cut to explicit formulas for solitons traveling on a wide range of background solutions. Our approach also links the binary Darboux transformation and the double commutation method. 
    more » « less